4 research outputs found

    Futuristic Air Compressor System Design and Operation by Using Artificial Intelligence

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)The compressed air system is widely used throughout the industry. Air compressors are one of the most costly systems to operate in industrial plants in terms of energy consumption. Therefore, it becomes one of the primary targets when it comes to electrical energy and load management practices. Load forecasting is the first step in developing energy management systems both on the supply and user side. A comprehensive literature review has been conducted, and there was a need to study if predicting compressed air system’s load is a possibility. System’s load profile will be valuable to the industry practitioners as well as related software providers in developing better practice and tools for load management and look-ahead scheduling programs. Feed forward neural networks (FFNN) and long short-term memory (LSTM) techniques have been used to perform 15 minutes ahead prediction. Three cases of different sizes and control methods have been studied. The results proved the possibility of the forecast. In this study two control methods have been developed by using the prediction. The first control method is designed for variable speed driven air compressors. The goal was to decrease the maximum electrical load for the air compressor by using the system's full operational capabilities and the air receiver tank. This goal has been achieved by optimizing the system operation and developing a practical control method. The results can be used to decrease the maximum electrical load consumed by the system as well as assuring the sufficient air for the users during the peak compressed air demand by users. This method can also prevent backup or secondary systems from running during the peak compressed air demand which can result in more energy and demand savings. Load management plays a pivotal role and developing maximum load reduction methods by users can result in more sustainability as well as the cost reduction for developing sustainable energy production sources. The last part of this research is concentrated on reducing the energy consumed by load/unload controlled air compressors. Two novel control methods have been introduced. One method uses the prediction as input, and the other one doesn't require prediction. Both of them resulted in energy consumption reduction by increasing the off period with the same compressed air output or in other words without sacrificing the required compressed air needed for production.2019-12-0

    Estimation of Short-term Mortality and Morbidity Attributed to Fine Particulate Matter in the Ambient Air of Eight Iranian Cities

    Get PDF
    Amongst the various pollutants in the air, particulate matters (PM) have significant adverse effects on human health. The current research is based on existing epidemiological literature for quantitative estimation of the current health impacts related to particulate matters in some selected principal Iranian megacities. In order to find the influence of air pollution on human health, we used the AirQ software tool presented by the World Health Organization (WHO) European Centre for Environment and Health (ECEH), Bilthoven Division. The adverse health outcomes used in the study consist of mortality (all causes excluding accidental causes), due to cardiovascular (CVD) and respiratory (RES) diseases, and morbidity (hospital admissions for CVD and RES causes). For this purpose, hourly PM10 data were taken from the monitoring stations in eight study cities during 2011 and 2012. Results showed annual average concentrations of PM10 and PM2.5 in all megacities exceeded national and international air quality standards and even reached levels nearly ten times higher than WHO guidelines in some cities. Considering the short-term effects, PM2.5 had the maximum effects on the health of the 19,048,000 residents of the eight Iranian cities, causing total mortality of 5,670 out of 87,907 during a one-year time-period. Hence, reducing concentrations and controlling air pollution, particularly the presence of particles, is urgent in these metropolises

    Systematic energy and exergy efficiency study and comparison between direct fired and indirect fired heating systems

    No full text
    The variability in energy demand provides one of the greatest challenges utilities face in supporting the electrical grid. Utilities meet peak demand loads through more expensive generation methods and as a result, utilities will often charge large energy users based on their peak electrical demand as well as their overall energy consumption. The peak demand charge incurred can represent a signi cant portion of the total utility bill, thus taking measures to manage electrical demand can result in substantial cost savings. The goal of this research is to analyze the potential bene ts of utilizing a small-scale compressed air energy storage system as a form of demand management for an industrial manufacturer. A thermodynamic model has been developed to evaluate the feasibility of implementing a compressed air energy storage system based on the current energy and compressed air demands of the facility. The proposed system provides some of the facilities compressed air demand, produce energy to reduce the peak demand charge incurred and produce hot water which could be utilized for a variety of industrial processes. Finally, the model is validated with data from a nearby industrial manufacturing plant and the results are analyzed and discussed

    Air Compressor Load Forecasting using Artificial Neural Network

    Get PDF
    Air compressor systems are responsible for approximately 10% of the electricity consumed in United States and European Union industry. As many researches have proven the effectiveness of using Artificial Neural Network in air compressor performance prediction, there is still a need to forecast the air compressor electrical load profile. The objective of this study is to predict compressed air systems' electrical load profile, which is valuable to industry practitioners as well as software providers in developing better practice and tools for load management and look-ahead scheduling programs. Two artificial neural networks, Two-Layer Feed-Forward Neural Network and Long Short-Term Memory were used to predict an air compressors electrical load. Compressors with three different control mechanisms are evaluated with a total number of 11,874 observations. The forecasts were validated using out-of-sample datasets with 5-fold cross-validation. Models produced average coefficient of determination values from 0.24 to 0.94, average root-mean-square errors from 0.05 kW - 5.83 kW, and mean absolute scaled errors from 0.20 to 1.33. The results indicate that both artificial neural networks yield good results for compressors using variable speed drive (average R2 = 0.8 and no naïve forecasting), only the long short-term memory model gives acceptable results for compressors using on/off control (average R2 = 0.82 and no naïve forecasting), and no satisfactory results are obtained for load/unload type air compressors (models constituting naïve forecasting)
    corecore